Shisa Promotes Head Formation through the Inhibition of Receptor Protein Maturation for the Caudalizing Factors, Wnt and FGF

نویسندگان

  • Akihito Yamamoto
  • Takashi Nagano
  • Shoko Takehara
  • Masahiko Hibi
  • Shinichi Aizawa
چکیده

Head formation requires simultaneous inhibition of multiple caudalizing signals during early vertebrate embryogenesis. We identified a novel antagonist against Wnt and FGF signaling for head formation, Shisa, which functions cell autonomously in the endoplasmic reticulum (ER). Shisa is specifically expressed in the prospective head ectoderm and the Spemann organizer of Xenopus gastrulae. Overexpression of Shisa inhibited both Wnt and FGF signaling in Xenopus embryos and in a cell line. Loss of Shisa function sensitized the neuroectoderm to Wnt signaling and suppressed head formation during gastrulation. Shisa physically interacted with immature forms of the Wnt receptor Frizzled and the FGF receptor within the ER and inhibited their posttranslational maturation and trafficking to the cell surface. Taken together, these findings indicate that Shisa is a novel molecule that controls head formation by regulating the establishment of the receptors for caudalizing factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos.

In vertebrate somitogenesis, FGF and Wnt signals constitute a morphogenetic gradient that controls the maturation of the presomitic mesoderm (PSM) as well as the transition to segmental units. It remains unclear, however, whether there is a regulatory mechanism that promotes the transition by a direct regulation of FGF and Wnt signaling in the PSM. Here we show that Shisa2, a member of a novel ...

متن کامل

Antagonizing Wnt and FGF Receptors an Enemy from within (the ER)

In this issue of Cell, Yamamoto et al. (2005) describe a novel molecule, Shisa, which functions in the endoplastic reticulum (ER) to prevent maturation of Frizzled (Fz) serpentine receptors and fibroblast growth factor receptor (FGFR). Shisa thus antagonizes Wnt and FGF signaling cell-autonomously, thereby promoting anterior patterning in Xenopus.

متن کامل

Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence si...

متن کامل

Developmental expression of Shisa-2 in Xenopus laevis.

Shisa is an antagonist of Wnt and FGF signaling, that functions cell autonomously in the endoplasmic reticulum (ER) to inhibit the post-translational maturation of Wnt and FGF receptors. In this paper we report the isolation of a second Xenopus shisa gene (Xshisa-2). Xenopus Shisa-2 shows 30.7% identity to Xshisa. RT-PCR analysis indicated that Xshisa-2 mRNA is present throughout early developm...

متن کامل

Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings.

In an effort to identify Otx2 targets in mouse anterior neuroectoderm we identified a gene, mShisa, which is homologous to xShisa1 that we previously reported as a head inducer in Xenopus. mShisa encodes an antagonist against both Wnt and Fgf signalings; it inhibits these signalings cell-autonomously as xShisa1 does. The mShisa expression is lost or greatly reduced in Otx2 mutant visceral endod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2005